TY - JOUR AU - Risky Darmawan, AU - Rahmat Bangun Giarto, AU - Hanif Ikhwan Taufiqurrahman, AU - Novita Bunga Puspasari, AU - Harta Meangga Wicakopus, AU - Andi Ayni Aulia, PY - 2023/01/23 Y2 - 2024/03/29 TI - PEMANFAATAN BAHAN TAMBAH SIKA-VISCOCRETE GUNA MENINGKATKAN KUAT TEKAN BETON TANPA PASIR (NO FINES CONCRETE) SEBAGAI ALTERNATIF PENGENDALI BANJIR JF - Prosiding Seminar Nasional Terapan Riset Inovatif (SENTRINOV) JA - SENTRINOV VL - 8 IS - 1 SE - DO - UR - https://proceeding.isas.or.id/index.php/sentrinov/article/view/1186 SP - 374 - 382 AB - <p style="font-weight: 400;">No fines concrete can be known such as porous concrete, because it does not use sand in the mixture. During the rainy season in urban areas there are many puddles because water is difficult to seep into the ground. Sandless concrete can be used in road pavement construction, namely as a surface flow controller and can increase water absorption so that it can increase groundwater conservation, so it can be said that sandless concrete is an environmentally friendly construction and solution to minimize flooding. This study aims to test the compressive strength and infiltration ability of concrete without sand. This sandless concrete research uses coarse aggregate and Sika-Viscocrete added material, this added material can help maintain quality and accelerate the hardening process. The size of the coarse aggregate used passes the 3/4" sieve but is retained by the 1/2" sieve, the ratio of cement: aggregate used is 1:2; 1:3; 1:4; 1:5; and cement ratio with 1% Sika-Viscocrete added. The research begins with material inspection, planning material requirements, making concrete without sand then testing compressive strength and infiltration testing. The results showed that the compressive strength of concrete without sand with a variation of the ratio of cement, gravel and Sika-Viscorete (1%) 1:2 was 23.37 MPa. The highest infiltration rate occurred in the 1:5 mixture of 7.23 mm/second. The infiltration rate can serve to reduce standing water on the surface.</p> ER -