• Dimas Okky Anggriawan
  • Aliffian Rifki Fauzi
  • Endro Wahjono


kWh meter, Energy, Programmable, Overcurrent Protection


In the current era of globalization, electricity has turned into a basic need that continues to be attached to human life. Therefore, PT. PLN (Persero) makes the reliability of the electricity distribution system a top priority for handling. Increasing the reliability of the electric power distribution system needs to be balanced with an effective and efficient electrical energy transaction process. In the postpaid kWh meter, the process of obtaining data on the amount of energy used by the customer is done by reading the postpaid kWhmeter manually by means of officers coming to each location of the postpaid kWh meter. How to get data on the amount of energy used conventionally should be done in other ways in this fully automated era or often referred to as the industrial era 4.0. The use of IoT is one method that can be used to simplify the work of recording meters without having to visit the kWh meter location. In this paper, a postpaid kWh meter is designed that can monitor the amount of energy used by customers using an energy sensor (PZEM-004T) which is connected via a microcontroller. The system used is programmable, which means the system can be set manually through an application on Android for the current limit value so that it can be adjusted to the customer's power subscription. This tool is also equipped with an overcurrent protection that is integrated with the microcontroller. Thus, the system can disconnect the circuit to the load in the event of an overcurrent fault and reconnect when the fault has been resolved automatically. From the test results that have been carried out for 30 minutes, the energy reading through the PZEM-004t sensor is 1230 Wh. Then from a total of 30 minutes of testing with a 5 minute lag, the average error of energy readings through the energy sensor (PZEM-004t) when compared with measuring instruments is 21.12093%. When the input current limit value is 2 A, the SSR relay will be able to break the circuit when the detected current is 2.3 A. The designed kWh meter is also capable of disconnecting and connecting the circuit to the load in the event of an overcurrent disturbance automatically.


Alfian Wisnu Aribowo. (2019). “Rancang Bangun KWH meter Digital Satu Fasa Untuk Mengatasi Deviasi Waktu Pembacaan”. Surabaya: Politeknik Elektronika Negeri Surabaya.

Hari Yuliansyah. (2016). “Uji Kinerja Pengiriman Data Secara Wireless Menggunakan Modul ESP8266 Berbasis Rest Architecture”. Lampung: Institut Teknologi Sumatera.

Frandhiyawan, V., Istiyo, W., Daeng, R. (2019). “Rancang Bangun Rele Arus Lebih Berbasis Monitoring Internet of Things (Iot) dan Arduino Sebagai Proteksi Elektronik 1 Fasa”. Surabaya: Universitas Hang Tuah.

Amrulloh, A.K. (2018). “Rancang Bangun Prototipe Rele Arus Lebih Dengan Karakteristik Inverse Berbasis Arduino”. Malang: Universitas Brawijaya.

Cahayahati, M.Z. (2012). “Perancangan Rele Arus Lebih dengan Karakteristik Invers Berbasis Mikrokontroler Atmega 8535”. Padang: Universitas Bung Hatta.

M. Zulfahmi. (2019). “Rancang Bangun Alat Pengukur Daya Dan Penghitung Biaya Selama Pergantian Kwh Meter 3 Phasa Pengukuran Tak Langsung”. Surabaya: Politeknik Elektronika Negeri Surabaya.

Rizal Akbar. (2018). “Rancang Bangun Alat Monitoring Tegangan, Arus, Daya, Kwh, Serta Estimasi Biaya Pemakaian Peralatan Listrik Pada Rumah Tangga”. Yogyakarta: Universitas Islam Indonesia.

Fridom Tusano Hadi. (2019). “Alat Pengukur Deviasi Pengukuran Pada Kwh Meter Digital 1 Fasa”. Surabaya: Politeknik Elektronika Negeri Surabaya.




How to Cite

Dimas Okky Anggriawan, Aliffian Rifki Fauzi, & Endro Wahjono. (2023). RANCANG BANGUN KWH METER DIGITAL 1 PHASE PROGRAMMABLE BERBASIS IOT. Prosiding Seminar Nasional Terapan Riset Inovatif (SENTRINOV), 8(1), 122 - 129. Retrieved from https://proceeding.isas.or.id/index.php/sentrinov/article/view/1161