PENGELOMPOKAN DAERAH BERDASARKAN FAKTOR DAMPAK BENCANA TANAH LONGSOR MENGGUNAKAN ALGORITMA K-MEDOIDS CLUSTERING REGIONS BASED ON LANDSLIDE IMPACT FACTORS USING THE K-MEDOIDS ALGORITHM
Keywords:
K-Medoids, Clustering, Davies Bouldin, RapidminerAbstract
Natural disasters have the potential to damage the environment, harm property and cause loss of life. Landslide disaster mitigation is still not optimal in Balikpapan. Therefore, it is necessary to carry out research to produce a grouping of the impact levels of landslide disasters in 34 sub-districts in Balikapapan. Data processing uses the K-Medoids algorithm with the Rapid Miner tool. In regional grouping, testing is carried out from the number of clusters = 2 to clusters = 5. Then analysis is carried out using the Davies Bouldin Index (DBI) value to find out the best grouping results. From the results of the analysis, it was found that the best DBI value was the grouping of affected areas at K=5, namely the very low impact category with 10 subdistricts (Cluster 4), the low impact category with 7 subdistricts (Cluster 0), the moderately impacted category with 9 subdistricts (Cluster 2). , the highly impacted category is 7 sub-districts (Cluster 3), the very highly impacted category is 1 sub-district (Cluster 1), namely the Sepinggan sub-district. with a DBI value of 0.032.
References
BNPB. (2021). Bencana Indonesia 2021. Badan Nasional Penanggulangan Bencana. https://bnpb.go.id/infografis/kejadian-bencana-tahun-2021
Fadilah, N. (2022). Penerapan Metode Algoritma K-Means Untuk Clustering Daerah Rawan Tanah Longsor Di Provinsi Jawa Tengah. Jurnal BATIRSI, 6(1), 1–5. https://bpbd.jatengprov.go.id/.
Gustrianda, R., & Mulyana, D. I. (2022). Penerapan Data Mining Dalam Pemilihan Produk Unggulan dengan Metode Algoritma K-Means Dan K-Medoids. Jurnal Media Informatika Budidarma, 6(1), 27. https://doi.org/10.30865/mib.v6i1.3294
Islamy, U., Nursidah, D. R., Narendra, I. S., Anshori, M. L., & INTISARI, E. W. (2022). Pengelompokkan Provinsi Di Indonesia Berdasarkan Indikator Dampak Bencana Banjir Tahun 2017-2020. Bimaster, 11(2), 381–388.
Lioni, A. (2014). PENGARUH PERTAMINA TERHADAP MASYARAKAT KOTA BALIKPAPAN 1957-1975. https://eprints.uny.ac.id/21688/10/Ringkasan.pdf
Maimon, O., & Rokach, L. (2011). Data mining and knowledge discovery handbook. In Choice Reviews Online (Vol. 48, Issue 10). https://doi.org/10.5860/choice.48-5729
Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI
Pramesti1, D. F., Furqon, M. T., & Dewi, C. (n.d.). Implementasi Metode K-Medoids Clustering Untuk Pengelompokan Data Potensi Kebakaran Hutan/Lahan Berdasarkan Persebaran Titik Panas (Hotspot). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer. https://doi.org/10.1109/EUMC.2008.4751704
Sukmayadi, C., Primajaya, A., & Maulana, I. (2021). Penerapan Algoritma K-Medoids dalam Menentukan Daerah Rawan Banjir di Kabupaten Karawang. INFORMAL: Informatics Journal, 6(3), 187. https://doi.org/10.19184/isj.v6i3.25423