SISTEM DATA LOGGER SHMS BERBASIS LVDT DENGAN KALMAN FILTER UNTUK PENGUKURAN DISPLACMENT
Keywords:
Structural Health Monitoring System (SHMS), LVDT, Kalman FilterAbstract
This study presents the development of a prototype Structural Health Monitoring System (SHMS) aimed at measuring displacement in elastomeric bridge bearings using a Linear Variable Differential Transformer (LVDT) sensor integrated with a Kalman Filter. The system is designed to enable accurate, real-time, and reliable monitoring by mitigating signal noise commonly found in LVDT outputs. The prototype is composed of two primary components: a Data Acquisition Unit (DAQ) that reads displacement and transmits data via the MQTT protocol, and a Data Logger that processes the incoming signal using the Kalman Filter, stores it in CSV format, and displays real-time data through a web-based dashboard. The research methodology includes a literature review, mathematical modeling of the Kalman Filter, hardware design, and performance testing in a controlled laboratory environment. Experimental results demonstrate that a Kalman Filter configuration with parameters Q=1e-5 and R=0.01 significantly reduces measurement noise, yielding smoother displacement curves that closely align with micrometer reference data. The findings confirm the effectiveness of the system for monitoring structural displacement. The integration of LVDT sensors, IoT-based communication, and signal processing techniques in this prototype highlights its potential for practical implementation in infrastructure safety assessment.
References
DAFTAR PUSTAKA
Al-Azzawi, M., Al-Khafaji, F., & Hussein, H. (2023). Real-time bridge monitoring using IoT and MQTT protocol. Journal of Civil Structural Health Monitoring, 13(1), 91–104. https://doi.org/10.1007/s13349-022-00583-2
Cai, S., Hu, Y., Ding, H., & Chen, H. (2018). A noise reduction method for MEMS gyroscope based on direct modeling and Kalman filter. IFAC PapersOnLine, 51(31), 172–176. https://doi.org/10.1016/j.ifacol.2018.10.032
Hartono, J., & Khoiroh, U. (2021). Evaluasi rencana pemasangan sensor struktur monitoring untuk jembatan bentang panjang: Studi kasus Jembatan Teluk Kendari. Jurnal Manajer Pendidikan dan Teknologi, 16(2), 549–558.
Li, J., Li, Y., & Yu, M. (2022). Advances in displacement sensors for structural health monitoring: A comprehensive review. Sensors, 22(4), 1453. https://doi.org/10.3390/s22041453
Pishgahi, F., & Taghikhany, T. (2023). Mechanical model for seismic nonlinear behaviour of rubber bearings with end-rotation in highway bridges. Structures, 47, 875–890. https://doi.org/10.1016/j.istruc.2023.01.046
Rumbyarso, Y. P. A. (2025). Buku referensi struktur jembatan: Analisis dan aplikasi. Bandung: Widina Media Utama.
Salmon, S., Ahniar, N. H., & Nurdinawati, V. (2024). Design of a data logger with WEB-based storage. Electromedic: Journal of Medical Electronic Multidisciplinary, Published June 28, 2024. https://doi.org/XXXX
Wardhani, R. N., Setiowati, S., Riandini, R., Santoso, B., Fadilla, N., Zain, A. D., Ismail, I., Hidayat, T., Mudzakir, S. P. N., & Atmojo, A. Y. (2023). Pengujian dinamis impuls awal vertikal SW23 sebagai pengukur frekuensi jembatan tol. Seminar Nasional Terapan Riset Inovatif (SENTRINOV), Vol. 9, No. 1, 159–167. ISAS Publishing.
Zhang, Y., Wang, X., Liu, H., & Xu, Q. (2021). Field monitoring of bridge displacement using LVDT sensors and deep signal denoising. Smart Structures and Systems, 28(5), 697–709. https://doi.org/10.12989/sss.2021.28.5.697



