OPTIMASI VARIATIONAL QUANTUM CLASSIFIER (VQC) PADA KLASIFIKASI GAMBAR PERKEBUNAN KELAPA SAWIT
Keywords:
Variational Quantum Classifier, Oil Palm Image Classification, Quantum Machine Learning, Feature Map, Quantum OptimizerAbstract
This study explores the optimization of the Variational Quantum Classifier (VQC) for classifying plantation images, particularly distinguishing between oil palm and non-oil palm trees. Previous quantum models such as Quantum Convolutional Neural Networks (QCNN) demonstrated high accuracy but suffered from high complexity and qubit requirements. To address this limitation, this research employs a more modular and efficient quantum model, the VQC, optimized through the exploration of 18 combinations of feature maps (PauliFeatureMap, ZFeatureMap, ZZFeatureMap), ansatz circuits (RealAmplitudes, TwoLocal, EfficientSU2), and optimizers (COBYLA, SPSA). The dataset comprises 220 images resized to 32×32 pixels and preprocessed through standard scaling, PCA (to 4 dimensions), and normalization to [-1,1]. The best performance was achieved using the combination of ZZFeatureMap, EfficientSU2, and COBYLA, yielding an accuracy of 93%. Evaluation metrics include accuracy, precision, recall, F1-score, and specificity. The results reveal that the selection and interaction of feature map, ansatz, and optimizer significantly affect classification performance. These findings suggest that VQC is a promising alternative for image classification in digital agriculture, offering high accuracy with lower quantum resource demands.
References
DAFTAR PUSTAKA
Adermann, E., Suzuki, H., & Usman, M. (2025). Variational Quantum Machine Learning
with Quantum Error Detection. ArXiv Preprint ArXiv:2504.06775.
Alami, M. el, Innan, N., Shafique, M., & Bennai, M. (2024). Comparative Performance
Analysis of Quantum Machine Learning Architectures for Credit Card Fraud Detection. ArXiv Preprint ArXiv:2412.19441.
Amirullah, D., & Gultom, L.M. (2025). Classification of Oil Palm Trees Using Quantum
Convolutional Neural Network (QCNN). ABEC Indonesia, 196–201.
Bagoun, Y., Zinedine, A., & Berrada, I. (2024). Autism Spectrum Disorder Detection with
Quantum Machine Learning Methods. 2024 Sixth International Conference on Intelligent
Computing in Data Sciences (ICDS), 1–6.
Fathi, M., Gomaa, W., Wada, Y., Kimura, K., Ueda, K., & El-Mahdy, A. (2024). Ideal
Parametrisation Estimation for Variational Quantum Circuit Classifiers Using Machine
Learning. 2024 IEEE International Conference on Quantum Computing and Engineering
(QCE), 2, 114–119.
Henderson, M., Shakya, S., Pradhan, S., & Cook, T. (2020). Quanvolutional neural networks:
powering image recognition with quantum circuits. Quantum Machine Intelligence, 2(1),2.
Khan, W. R., Kamran, M. A., Khan, M. U., Ibrahim, M. M., Kim, K. S., & Ali, M. U. (2025).
Diabetes prediction using an optimized Variational Quantum Classifier. International
Journal of Intelligent Systems, 2025(1), 1351522.
Laskaris, G., Melnikov, A. A., Perelshtein, M. R., Brasher, R., Baeck, T., & Neukart, F.
(2023). Comparison between tensor networks and Variational Quantum Classifier. ArXiv
Preprint ArXiv:2311.15663.
Maheshwari, D., Sierra-Sosa, D., & Garcia-Zapirain, B. (2021). Variational quantum
classifier for binary classification: Real vs synthetic dataset. IEEE Access, 10, 3705–
Mattern, D., Martyniuk, D., Willems, H., Bergmann, F., & Paschke, A. (2021). Variational
quanvolutional neural networks with enhanced image encoding. ArXiv Preprint
ArXiv:2106.07327.
Parthasarathi, P., Alshahrani, H. M., Venkatachalam, K., & Cho, J. (2025). Variational
quantum classifier-based early identification and classification of chronic kidney disease
using sparse autoencoder and LASSO shrinkage. PeerJ Computer Science, 11, e2789.
Sathan, D., & Baichoo, S. (2024). Drug Target Interaction prediction using Variational
Quantum classifier. 2024 International Conference on Next Generation Computing
Applications (NextComp), 1–7.
Souza, A., Cruz, C., & Moret, M. A. (2025). Qiskit Variational Quantum Classifier on the
Pulsar Classification Problem. ArXiv Preprint ArXiv:2505.15600.



